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ON STRATEGIES IN DIFFERENTIAL GAMES™

G. V. TOMSKIIX

UDC 62-50

Piecewise-programmed, piecewise~synthesizing and recursive strategies in different-
ial games are examined, It is shown that in a specific sense these strategies can
be considered as special cases of upper A-strategies. The paper borders on the
studies in /1—8/.
1. Let the dynamics of a game be described by the vector differential egquation
dridt = f{t, =, w, v), L, <ILT, 2R, vEPHCU, v=QBHCV (1.1)
where U (1) is a compact set in Buclidean space R" (R%) and at least one pair of controls
u(ty and U (f) measurable on [#, T] exists, such that u() =P (), v (N EQ W), L LI T. The
function f on the right-hand side of the motion Egs. (1.1} is continuocus on He, T X B® x U X%,
¥ and on this set satisfies a Lipschitz condition in ¢ with a constant ), We shall examine
two controlled dynamic systems /6/ governed by Eq. (1.1).

Dynamic system Sy = ([t,, T1, B", D1, Dy, »). The set Dy (D;) of admissible contrels of the first
{second) player in system X, consists of all vector-valued functions U {)(v (1)) measurable on
interval I#,, Tl, satisfying the conditions u{) € P () () = @ 1)) t, < ¢ < T.The paths z (i) =
% {f, fy. T4 ¥, V) of this system are defined as the solutions of the system of Egs. {1.1} when

w=u()e=Dy and v="v{) ED; under the initial conditiocn Z (fy) = Ty

Dynamic system 2, = (&, 71, B", Dy (ky), D, (k,), »). The set Dy (k) (Dy (k) of admissible con-
tyols of the first (second} player consists of all wector-valued functions U (¢ 2w ¢, )
defined on lf,, T1 x R" taking values in UV, u(t, d P C U p(t, =0 B C Vi 68T,
z & B™ measurable in { on [, Tl for each fixed %, and satisfying a Lipschitz condition in
z with constant % (k) on set [fy, T1 X B The set Di (k) (D; (k;)) can be looked upon as a set
consisting of mappings of interval [Zo T] into the set of functions

Uy ={u@nyCIR, Ulflu{n)—uvdl <ol for all i, x, € R"}
(Vi=@e iR, Villlviany —vi i <<hin—2i, for a1l 1. =R
The paths x (f) = % ({, 1y, T4, &, v) of system 3, are defined as the solutions of the system of Egs.(1.1)
when #=u(t, £y =D, (k)and v =v(t )& D, (k) under the initial condition % (fx) = Tu It is
assumed that function j on the right hand side of the motion Egs. (1.1) satisfyonset lf, 71 X R™ x
U x V a Lipschitz condition in gz, u, v with a constant A.

2. Piecewise-programmed strategies /6,7/ in system Z, will be called piecewise-synthesiz-
ing strategies. By D [k, t,] (D,* 1k, t,]) we denote the set of all piecewise-synthesizing
strategies of the first (second) player in the quasidynamic system 2 (fy, ) /6/. Let A ={ty =

L < HA <. ..< i34 = T} be any finite partitioning of interval I, T1. By D2 {1 (DA 18]) we
denote the set of all upper A-strategies, by Dl (Daa 18]} we denote the set of all A -strateg-
ies, and by Dy* {t, [{D;* {t,]) we denote the set of all piecewise-programmed strategies of the first
(second) player in system 23 (I4. %) /6/. The following statement is valid.

Theorem l. For any piecewise-synthesizing strategy ¢ & Dy* [k, L0 & D,* Ik, 1,]) there
exists an upper A-strategy ¢S DALl @t e D2 i,l)  such that
#® Al t,, Ty, 3 = 4 A b
for all A-strategies i, & D,, i{t*} w T ® R0 T b 2 9 9)

(o (ty Lys Ty @ar ) = % (8 by Zyo Pa, )
for all A-strategies g, < Dy, 1,0}

3. Let
Sltey=> 1] 1D18ss8) X Dalty, )}, Mt )= 1] D1[8)
ty<te T (< T
8T
Definition 1. Any finite collection of mappings & = {45, ..., ), where a = a; & Dyli,,
7} for n=1 and )
a = . DiliB)y xS {E)—11{), &=2,....n
et
for 7.2, and where the conditions an(un V) €Dilt, ) and e, vy EDl 0 t<O T,
k=12, ..., n—1, are fulfilled if {u, 0} ED:ilfy ) X Do lly B, t,<<t<C ¥, is called the
first player’s recursive strategy in system 32 {f,, z,). The second player's recursive strategy
b == (by, ... D) in system Z; (. #4) is defined analogously.

The path =z (f) = u (t, by Ty 4, b) OF system 3., generated by a pair of recursive strategies
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a = (ay, . . -,8,) and b = (b, - . -.bm), is determined as follows. At the initial instant ¢, the
players choose the controls
Uy = a1 & Dy [l*, ), U1 = b= D, [t*, ty1)

For definiteness let !u <<l!a. Then at instant !m the first player chooses the control U, =
ay (w1, vn) € Dy [ty t,) , depending on the controls u; and Vu realized by the players on interval
[t,, tul, where vy denotes the restriction of control v = by on the interval lf,, fu). (We note

that in contrast to peicewise-programmed strategies the instant {,, in general, also depends

on controls 1 and vu: f1p = fiy (U1, V1) ). We compare the quantities t,; and  t,. If o1 << t1y,
then at instant %3 the second player chooses the control
Uy = by (1, Uy, v1) € Dy Mty oy (Ur, Ua1, 1))

depending on the controls (u;, U;) and V1 realized by the players on the interval [f, ) (un

denotes the restriction of control U, on the interval [y, t,)). If {;u>>ts, then at instant
l1; the first player chooses the control

Uy = a3 (U, Us, V1a) & Diltay, trs (U1, Uy, ¥1y))

where vi, denotes the restriction of control vy on [f, t,).

Continuing this process, in at most n + m — 1 steps we obtain uniquely the pair of

controls = (Un ..y =ua, b), v= (01 .. V) =0 (a, b)

generated by the pair of strategies ¢ and & . Thus, a pair of recursive strategies @ and b
determines a unique path z (t) = % ({, by, Ty @, b) = % (8, ty, 74, u (2, b), v (a, b)) of system £, The
choice of recursive stategy a = (4, ...,a,) by the first player signifies that in the course
of the game he can change his control n times, depending on the information at hand. The
control switching instants are not fixed at the start of the game as when applying piecewise-
programmed strategies, but are determined by the player during the game.

Notes. 1°, Any finite collection of mappings a = (ay,. . ., ay), Where

a=a &y n=1, g &U D lt, 1), lty, T] X B® = I (1) : -
tater * ¥ on>2 k=2,
satisfying the following conditions:
an (t, 2) = Dy {t, T), a (¢, eI, 8), t<8< T, k=14,..., n—1
is called the first player's positional recursive strategy in system I, (4. z«) (see /8/). The
second player's positional recursive strategy is defined in the same manner. Any positional
recursive strategy @ = (&, .., @n) induces a recursive strategy a = (4, aj,..., a,), wWhere
af (uy, v0) = ag (1, % (1, Ly, Tay Uty 1), k=2, ..,
thus, positional recursive strategies are special cases of recursive strategies.
2°. A pair ¢ == (A, ¢s), where A is any finite partitioning of interval its, 7} and 9 is a
first player's recursive strategy 9a = @ap--- Panwy) such that @ax(p %) = Dbk, ) if
(Upoqr V51 € Dy [e4s lﬁ_l) X Dy s, lﬁpi), E=2,... n(4a)
is called the first player's piecewise-programmed strategy in system 3I,(tx.2¢) (see /3,6,7/).
In analogous fashion we can rephrase the definition of piecewise-programmed strategies for

the second player. Consequently, .
Dylt, ) TDflte), k=12

where Dy [t] is the set of all recursive strategies of the & -th player in system I, (., x4
We obtain the next statement by comparing the definitions of recursive and upper A-
strategies.

Theorem 2. For any finite partitioning A of interval I% Il and any recursive strat-
egy ae= D] It (b =D} It,)) an upper A-strategy ¢* & Dy 1) (p* = D [t,]) exists such that
u (@, pa) = u (9% Ya), v (@ $a) = v (@2, a), (u(pa, O) = u{@a, V), v(gs, b) = v (pa, P»)  (3.1)
for all VYa & Dy, [t,] (9a & Dya [t,]).

Proof. We take an arbitrary recursive strategy @ = (a, ..., a,) & D, [t,] and any finite
partitioning A of interval s, Tl. We need to show that with the use of strategy a we can
construct an upper A-strategy ¢2 = (¢, ..., ¢57"4) in system I, (¢, x4), satisfying relations
{(3.1). We indicate a method for constructing the mapping

(PA’ L Dz [t*v tlA) — Dl [t*7 tLA) (3.2)

Let @& Dylt,, ;). If & >4% then ¢! is the restriction of control @, on interval [t ).
In this case @41 is independent of the control chosen by the second player on lte, 2], Let
t << 42 and 4y (ay, v1) & D) 4y, t,). If 1, = ty{ay, 1) > 4> then ¢! = g, on interval ltes 8) &
while on intexval [¢,, £,4) it coincides with the restriction of control a. (a,, vy) on this
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interval. If on interval [ty }1) the second player chose a control ¥ such that b == & (a1,
v;) <C t,3, but the condition
ty =ty {ay, az{ey, vi); o) > 8%

is valid for the second player's control on interval [y, &), then ¢&! = g, on interval [f,,4],

@A 1 = a, (a;, »y) on interval lf;, t;), and on lf, t,2) the mapping @1 coincides with the restric-
tion of mapping s (a5, @ (2, v)); v;). Continuing these arguments, we construct the mapping (3.2).
In analogous manner we can construct the mappings ¢%% k=2, .. .,n(A). The theorem is proved.

4. Let us consider recursive strategies in system X, (f,,z,). Let
Sl (t*) = U [Dl [kh t*: t) X DZ (k21 s t)], Hl (t*) = U Dl [klv t, 9)
te<I<T tyi<T

{<b<T
Definition 2. Bany finite collection of mappings ¢ = {4, . . ., a,), where

a=a & Dk, t, T), n=1, a‘e,f,;TD‘M""*’t}’ a8y (ty) =i (t,) n>2, k=2,...,n

and conditions
ay (@, ) E Dy, 8, 1), aclw, 2Dy, & 8), t<<8<T, k=12 ...0n—1

are fulfilled if {u, v} €& D, lky, b, 1) X Dy lky, by, £, << t<C T, is called the first player's
recursive strategy in system I, (f,, z,)-

The second player's recursive strategies in system X, (f,, z,) are defined analogously. By
D/ ky, t,) (D) ks, t,]) we denote the set of all recursive strategies of the first (second) play-
er in system I, ({4, z,). The inclusions

DXy, 0, JC D7 TRy, 8], i=12

are valid. The following statement can be obtained by combining the methods of proofs of
Theorems 1 and 2.

Theorem 3. For any finite partitioning A of interval lf,, 7] and any recursive strat-
egy a < D) Ik, 8] (0 = Dy [k, £,]) an upper A-strategy ¢ & Dy lt,] (§% & D, (3,)] exists such

that
X (E, byy Tyy @, Vo) = % (f, Ly, T4y @2, Pa)

(K (t, t*v Ty Pas b) =% (tv Lyy Tyy @rs ’4’""))

for all s & Dy [t,] (s & Dys [8,D.
Analogous statements are valid for global strategies /9/.
5. It can be proved that the sets @ (3, ¢
3, {ty, 2o and T, (¢, z,) coincide, i.e.
D (b 24) = D (3, £y, 7)) = D (34, £, Zy)
(if function f satisfies a Lipschitz condition in (z, u, v)). Let a certain functional (the

second player's gain) H Dbe specified on set O (g, z,). Then we have defined the second play-
er's gain function

K (9% ya) = H (e () 2y, 74, 0% %)) on set D [t,] x Dy [2,]

o Ty and O (5, ¢, z,) of all paths of systems

K ((PAv ‘PA) = H (’K ('1 t*, I*, q’Av "~|JA)) on set DLA [t*] X DZA [t*]
Elp, 9)=H{x- bt 20 9. W) on set  Dy* Iy, t,] X Dy* [y, 2,] (D (8,1 ¢ D* Ty, 2], i = 1,2),

Ka, by =H (-, ty, Ty @ b)) on set Dy Ik, 1,0 x DY ey, t,1C D7 ,1D/ [k, 8,1, i=1, 2) .
Let us consider the antagonistic differential games:
Ty (b, z0) = <Dy* [1,), Dy* I8, K>
in the class of piecewise-programmed strategles,
Ty (8, z4) = <D* [k, t 0, Do* 1Ky, t,), K
in the class of piecewise-synthesizing strategies,
sty 2) = <DV (8, DY 18], B>, Talty, 24) = <Dy 1k, t,], DS 1k, 2], K>
in the class of recursive strategies. By Theorem 1 we have

Va(t,, x,)==inf sup K {(@a, P2} >  inf sup  K(g4¢) >
PAED A [1e] A=D, B[] CAED Al VED*(k, 1]
inf sup Ko, ) > su inf K{gp.v) > su inf K (g2 =V
Qe DT, L] SEDA TR, 1] A /meae*{g,eg gezDehy, ] (@ - %ez)gé[z*} edenArn] (@ %) 8t )

The inequalities

VA (ty,x,) > inf sup K(a,b)> sup inf  K(a,b) >Va(ty, )
aezDy T [1x] beD: [tx] aeD:"[t] a=D, T1x]
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Va(t,,x,)> inf sup K{a,b)> sup inf  K(a,b) > Valty, xy)

ac Dy [k, tel b&Di [Ks, t) bED:"[he, ] @S D1k, 1)

follow from Theorems 2 and 3. Thus, if
irAlf VA (b, xy) =sup Va(te, z4) (5.1)
then all games I (t,, z,), ¥ = 1,2,3, 4, have the value
val Ty (t,, z4) = val Ty (t,, z), k=234
It is well known that if H is a uniformly continuous functional on set O (¢, z,) (see
/10/}), then for the fulfillment of condition (5.1) it suffices to require that the function f
on the right hand side of motion Egqs. (l.l) satisfy the condition
ts B
inf sup S<l,f(t1,z,u(s),y(s))>ds—-— sup inf S(l,f(tl,x,u(s),v(s))>ds<y(12—t1)1 lim 18 0 (5.2)
820
t

veD: ush ; uelh veD.
N 1

for all I, z&= R", t, {t, < t, < T. This condition is fulfilled, for example, if
Pl zuy o) = f (t, 2, u) + 5 (t, 2, )
where /i and /f: are continuous vector-valued functions. If P()=U and Q@ =V for all
t,<t< T, then it follows from the saddle point condition for a small game /1/.

6. Let certain sets M and N exist in [t,, 7] X RB* and let an initial game position
{t4, z,} be specified. We consider the following two problems /6/.

Approach problem. For any number & >0 find the first player's positional piece-
wise-programmed strategy ¢. such that for all paths (g¢ = (A (&), @)

xr (t) =X (ta t*, Tyr Qe wA(e))’ ¢A(E) = D2A(€) [t*]
the relations
{fzmye M, {t, 2O} =Ne, t,<{t<t=1la ()] =T (6.1)
are fulfilled.

Evasion problem. Find a number & >0 and a second player's positional piecewise-
programmed strategy 1, such that contact (6.1) is excluded for all paths (Ye = (A (&), Yac))
T () =% (t, byy Tyo GO, ), 3O &= DO g ]

The following theorem on the alternative /1,2,6,10/ is valid.

Theorem 4. If condition (5.2) is fulfilled, then either the Approach problem or the
Evasion problem is solvable for any position {f,,z,}.

The first player, in the Approach problem, and the second player, in the Evasion problem,
employ upper A -strategies. They may even use past realizations of the controls of both play-
ers. This is due to the fact that a player-ally cannot impose any restrictions on the inform-
ation available to the opponent /1/. Theorems l1— 3 show that Theorem 4 on the alternative
remains valid if the opponent is allowed to use recursive /8/, piecewise-synthesizing or glcbal
strategies /9/.
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